
MD5 Collision Vulnerability: Generating
Identical Hash Values From Two Different

Computer Programs

Colby J. Leclerc

Abstract

A common theme for cryptographic hashing algorithms is for
them to be created, used, and trusted until a flaw is found, ren-
dering the algorithm no longer cryptographically secure [1]. When
such instances occur, many times the deprecated algorithm tends
to still be in use, posing a significant security flaw in such systems.
Specifically, the Message Digest 5 algorithm has been rendered cryp-
tographically insecure for collision resistance, and 1st preimage re-
sistance. Although there still exists evidence for the continued use
of MD5, it’s current vulnerabilities mean we should move to a more
secure alternative.

1 Introduction

In 1991, Professor Ronald Rivest of MIT created the fifth version of the
Message Digest algorithm, denoted as MD5. The fifth version was created
as a response to the security issues found in Message Digest 4 after ex-
tensive cryptanalysis was performed. However, in 1996 a security flaw in
the algorithm was found by Hans Dobbertin, leading security experts to
recommend the deprecation of the MD5 algorithm [2]. Despite such rec-
ommendations, MD5 has still been used to verify the integrity of program
files, which posses a risk due to the nature of the vulnerability.

2 Preliminaries

Definition 2.1 Message Digest 5 (MD5) is a version of the Message Di-
gest algorithm, designed in 1991 by Ron Rivest with the goal of addressing
the weaknesses found in Message Digest 4 (MD4). The hash algorithm uses
four variables of 32 bits each in a round-robin fashion to create a value that
is compressed to generate the hash. [1]

1

Definition 2.2 A cryptographic hash function h takes as input a message
of arbitrary length and produces as output a message digest m of fixed length
[3]

Definition 2.3 A digest is the output of a hash function. For example,
MD5 has a digest length of 128 bits.

Definition 2.4 Let h be a cryptographic hash function, and m be a message
of arbitrary length. There are two categories of collision resistance, weakly
collision free, and strongly collision free. Weakly collision free means that
given x, it is computationally infeasible to find x′ 6= x with H(x′) = H(x).
Strongly collision free means it is computationally infeasible to find mes-
sages m1 and m2 with h(m1) = h(m2). [3]

Definition 2.5 Let h be a cryptographic hash function, and m be a message
of arbitrary length. A hash function is said to be cryptographically secure
if it fulfills the following properties [3]:

1. Given a message m, the message digest h(m) can be calculated very
quickly.

2. Deterministic, such that the same input results in the same digest

3. A small change to the input results in a large change to the output

4. Given a y, it is computationally infeasible to find an m′ with h(m′) =
y

5. It is computationally infeasible to find messages m1 and m2 with
h(m1) = h(m2)

2.1 Attacks on Hash Functions

There exist three categories of attacks on hash functions:

1. Collision: Attacker finds an input that resolves to a specific hash.
The attacker must generate both files. “A pair of (x, x′) s.t. H(x) =
H(x′), x 6= x′” [5]

2. 1st Preimage: Modify an input without changing the resulting hash.
“For given y, x s.t. H(x) = y ” [5]

3. 2nd Preimage: Find any two distinct inputs that have the same hash.
An example would be an attacker who has the target file, and wants
to modify the file without affecting the computed hash. “For given
x, x′ s.t. H(x) = H(x′), x 6= x′ ” [5]

2

Definition 2.6 One use case for cryptographic hash functions is to ensure
a program file has not been tampered with during transmission by performing
integrity checks on the file. This is done by feeding the bytes of the file into
a hashing algorithm, and recording the digest (presupposing the hashing
algorithm is preimage resistant.) Then the file receiver would feed the bytes
into the same hashing algorithm, and compare the digest with the sender’s
digest (over a separate, preferably secure channel).

Definition 2.7 MD5 uses the Merkle-Damg̊ard construction, which is a
design method for building hash functions. One feature of this design is the
use of a compression function, whose job is to reduce the input parameter
to a fixed output size.

The Merkle-Damg̊ard construction works by breaking the input param-
eter into equal sized blocks for processing. Then, each block is chained
together using a compression function, which takes two parameters. For
the first round of compression, the first input parameter is an initialization
vector (IV), followed by the bytes of the first block. For subsequent rounds,
the compression function uses the output of the previous compression round,
along with the bytes of the next block to be processed.

To ensure the block are of equal sized, a padding of 0s are appended to
the input if needed. The construction also has a final block added to the
original input blocks, which encodes the length of the input parameter. This
process is illustrated below [12]:

3 Applications

Once a hashing algorithm is deemed cryptographically secured, a wide array
of information security applications are available.

3

3.1 Verify File Integrity

How can a user verify the integrity of a file after transmitting it over an
insecure channel? The user can use a cryptographic hash function to hash
the bytes of the file before and after transmission, then compare the hashes
to verify no bytes were altered. Typically the user would transmit the hash
codes over a separate channel to verify file integrity.

Although the MD5 algorithm is vulnerable to collision attacks, it is still
preimage resistant, meaning its applicability to verify file integrity is still
relevant. However, due to MD5’s collision vulnerability, one must ensure
the hash was generated by a trusted source.

3.2 Password Verification

Definition 3.1 A salt is a random string of characters that is appended,
or prepended, to the plain text of a password before the string is sent to a
hashing algorithm. Salting passwords is an information security measure
that makes certain attacks (such as rainbow table attacks) on the passwords
harder to perform, or computationally infeasible, depending on what infor-
mation the attacker has obtained.

Definition 3.2 A rainbow table is a large list of precomputed hashes for
a set of common passwords. Such lists tend to have multiple digests for
each password, covering the more common hashing algorithms. Although
these tables can be relatively large and expensive to transmit, such an attack
method uses more computer space as a trade off to computer processing
power (since each password hash does not need to be regenerated)

There exist multiple security levels regarding safe password storage.
Such levels are described below, from least secure to most secure:

1. Storing passwords in plain text

2. Storing passwords using an insecure hashing algorithm

3. Storing passwords using a secure hashing algorithm

4. Storing passwords using a salt in conjunction with a secure hashing
algorithm

5. Storing passwords using a unique, long salt per user, with the salt
stored separately from the hashed passwords. Passwords are hashed
using a secure hashing algorithm

4

The above list is not exhaustive, however it shows that there exists a
wide array of security levels regarding password storage.

Why is password storage important? Firstly is user privacy. If a soft-
ware system stores passwords in plaintext, then anyone with access to the
storage medium will be able to view the passwords of all users. Further-
more, we cannot assume users generate a unique password for each service,
thus this poses a major privacy issue.

Secondly is to protect the company. If user passwords are compromised
via a data breach, securely storing your user’s passwords can mean the
difference between 10 million passwords being leaked, vs 10 million hashes
being leaked. This difference is not arbitrary, as shown below:

Example 3.3 Let us suppose a company has stored their user’s password
hashes in one storage location, and the unique salts for each user in a
separate location. Furthermore, let us assume the company has a strong
infrastructure policy in which internal networks and servers are properly
sectioned off.

One day, it is discovered an attacker breached into the password database,
and stole all user’s passwords. However, because of the infrastructure pol-
icy in place, the attacker did not have access to the salts used for each user.
Thus, the attacker must now brute force each password, since the attacker
knows not the length of the salt, nor the character set used for the salt.

Now let us assume a similar company obeys similar practices mentioned
above, but without using the salting method when storing passwords. Once
again, an attacker steals the password hashes, but since no salt exists, the
attacker can use a rainbow table to discover the plain text for a large portion
of the passwords.

In the former case, the company would only have to ask it’s users to
change their passwords on their software system. In the later case, the
company would have to also disclose to its users that their passwords have
been compromised, and to change the password of any service that share
the same password. Furthermore, according to the newly enacted GDPR
legislature, the later company would be liable for the data leaked. [7]

The National Institute for Standards and Technology does not recom-
mend the use of the MD5 hashing algorithm for password storage. [8]

3.3 File Identification

Using cryptographic hash functions, we can assign a document a unique
identifier that matches to the specific document, and version of the docu-
ment. If the document’s contents change, then the hash is changed. Using
this property, we can identify large volumes of documents by their hash
digest.

5

One such application is for the tracking of documents in professions of
law. In many cases, legal teams have thousands of documents that must be
collected, tracked, read, and cited to build successful cases. Using the digest
allows the legal team to track individual documents, assure no changes were
made to the documents, and to quickly find the document’s source if the
digest is known.

4 MD5 Security

4.1 First Vulnerability Discovered

(Discuss MD5 collision found in 1996) MD5 is based on the Merkle–Damg̊ard
construction for building cryptographic hash functions. The goal of this
compression function is to take an arbitrary length of input bytes, to then
output a fixed-length digest. The MD5 function is designed as follows:

1. Hash input is padded

2. Input is broken into equal sized blocks

3. Using an initialization vector (IV), the first block is fed into the com-
pression function

4. Then, the output of the compression function, along with the next
block in the chain, are fed the compression function again, repeating
until each block has been compressed

5. The result is a 128-bit length digest of the input

The attack works by finding collisions within the chaining process. In
the CryptoBytes article, the attack is described as such [2] :

Let rounds 1/2 be chaining steps 12-26, and rounds 3/4 be chaining
steps 36-51.

1. Find an inner collision for rounds 1/2

2. Find an inner collision for rounds 3/4

3. Connect the two inner collisions

Such an attack can be reduced to the following equation:

φ
(
a1, b1, z

)
+ k = φ

(
a2, b2, z + δz

)
(1)

”where z is the unknown, φ is a Boolean function coming from step
operation, and the words a1, b1, a2, b2, k and δz are given” [2]

6

4.2 Collision Vulnerability

When designing a secure hash function, typically an n-bit hash function is
meant to have a security level of 2n hash invocations, protecting the hashed
data from 1st and 2nd preimage attacks. For collision attacks, the security
level is 2n/2 hash invocations.

MD5 is a 128-bit hash function, thus it’s intended security level is 2128

against preimage attacks, and 264 against collisions. One method of attack
is to discover a vulnerability that reduces the security level from computa-
tionally infeasible, to computationally feasible. MD5 suffers from a collision
vulnerability, reducing it’s collision resistance from requiring 264 hash in-
vocations, to now only 218. [4]

Attackers can take advantage of this vulnerability by writing two sepa-
rate programs, and having both program files hash to the same digest. In
doing so, an attacker can show the ’good’ source code to their target, have
the target hash the file, then send over the ’evil’ file which would also hash
to the same value.

4.3 1st Preimage Vulnerability

Researchers discovered a theoretical preimage attack against MD5 in 2009,
that reduces the security level of the algorithm from 2128 to 2123.4 [5]

4.4 2nd Preimage Resistant

The MD5 algorithm is still 2nd preimage resistant, thus MD5 is still safe
to use for file integrity checks, as long as the agent generating the files and
hash can be trusted. However, it is still recommended to use a stronger
hash algorithm to safeguard one’s self in the future, in case a 2nd preimage
attack becomes computationally feasible.

5 Alternatives

5.1 SHA-2 and SHA-3 Family

The Secure Hashing Algorithm version 2 (SHA-2) family of crypographic
hash functions include SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/224,
SHA-512/256. The proceeding number indicates the bit length of the di-
gest.

NIST ”...encourages application and protocol designers to implement
SHA-256 at a minimum for any applications of hash functions requiring
interoperability” [11]

7

The SHA family of cryptographic hashing algorithms are designed by
members of the National Institute of Standards and Technology, with their
most recent iteration the SHA-3 family released in 2015.

In their 2015 press release, NIST states SHA-3 ”...doesn’t replace SHA-
2, which has not shown any problem, but offers a backup. It takes years to
develop a new standard, and we wanted to be prepared in case problems
do occur.” [9] [10]

6 Further Research

Although MD5 is still 2nd preimage resistant, further research can be per-
formed to look into weakening MD5’s 2nd preimage resistance, as Sasaki
and Aoki have [5]. Finding a 2nd preimage vulnerability would potentially
lead to the total abandonment of MD5, as suggested by the NIST [11]

References

[1] Ciampa, Mark (2009). CompTIA Security+ 2008 in depth. Australia
; United States: Course Technology/Cengage Learning. p. 290.

[2] Hans Dobbertin (Summer 1996). ”The Status of MD5 After a Recent
Attack” (PDF). CryptoBytes .

[3] 8.1 Hash Functions. Introduction to Cryptography: with Coding Theory
, by Wade Trappe and Lawrence C Washington, Pearson Education,
2006, pp. 218-219.

[4] T. Xie, F. Liu, and D. Feng. Fast collision attack on MD5 . IACR
Cryptology ePrint Archive, 2013.

[5] Sasaki, Y., Aoki, K.: Finding Preimages in Full MD5 Faster Than
Exhaustive Search . In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 134–152. Springer, Heidelberg

[6] Ronald L. Rivest. Request for Comments 1321: The MD5 Mes-
sage Digest Algorithm. The Internet Engineering Task Force, 1992.
(http://www.ietf.org/rfc/rfc1321.txt).

[7] Presidency of the Council: Compromise text. Several partial general
approaches have been instrumental in converging views in Council on
the proposal for a General Data Protection Regulation in its entirety.
The text on the Regulation which the Presidency submits for approval
as a General Approach appears in annex, 201 pages, 11 June 2015,
PDF.

8

[8] Locke, Gary, et al. Recommendation for Password-Based Key Deriva-
tion . NIST Special Publication 800-132, U.S. Department of Com-
merce and National Institute of Standards and Technology, Dec. 2010,
nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-
132.pdf.

[9] Boutin, Chad. NIST Releases SHA-3 Cryptographic Hash Standard.
NIST, 8 Jan. 2018, www.nist.gov/news-events/news/2015/08/nist-
releases-sha-3-cryptographic-hash-standard.

[10] SHA-3 Standard: Permutation-Based Hash and Extendable-Output
Functions . FIPS PUB 202 FEDERAL INFORMATION PROCESS-
ING STANDARDS PUBLICATION , NIST Information Technology
Laboratory, nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf.

[11] NIST Policy on Hash Functions. NIST Computer Security Re-
source Center, csrc.nist.gov/projects/hash-functions/nist-policy-on-
hash-functions.

[12] Rosulek, Mike. “The Joy of Cryptography.” Oregon State University
Open Textbook Initiative, 22 Jan. 2018.

9

